
SheetSync Documentation
Release 0.2.3

Mark Brenig-Jones

Oct 03, 2017

Contents

1 Getting Started 3
1.1 Installation . 3
1.2 Setting up OAuth 2.0 access . 3

1.2.1 New Project . 4
1.2.2 Create a new Client ID . 4
1.2.3 Enable Drive API . 6

1.3 Injecting data to a Google sheet . 6

2 Tutorial 9
2.1 Customizing the spreadsheet . 9

2.1.1 Key Column Headers . 9
2.1.2 Templates for Formatting . 9
2.1.3 Folders . 10
2.1.4 Formulas . 10
2.1.5 Synchronizing data . 11

2.2 Taking backups . 12
2.3 Debugging . 12

3 The sheetsync package API 13
3.1 Sheet . 13
3.2 UpdateResults . 16
3.3 ia_credentials_helper . 16

i

ii

SheetSync Documentation, Release 0.2.3

A python library to create, update and delete rows of data in a google spreadsheet.

Contents 1

SheetSync Documentation, Release 0.2.3

2 Contents

CHAPTER 1

Getting Started

SheetSync is a python library to create, update and delete rows of data in a google spreadsheet.

Installation

Install from PyPi using pip:

pip install sheetsync

Or you can clone the git repo and install from the code:

git clone git@github.com:mbrenig/sheetsync.git LocalSheetSync
pip install LocalSheetSync

Note, you may need to run the commands above with sudo.

Setting up OAuth 2.0 access

In May 2015 Google retired old API access methods, and recommended users migrate to OAuth 2.0. OAuth2.0 is
better for security and privacy but it means getting started with sheetsync involves a bit of extra configuration.

The steps below (written in 2015) guide you through API configuration and a simple script to manipulate a Google
sheet. They will take around 20 minutes to complete.

Warning: This tutorial is designed to get you using sheetsync quickly. It is insecure because your client secret is
stored in plain text. If someone obtains your client secret, they could use it to consume your quota, incur charges
or request access to user data.

3

http://www.pip-installer.org/en/latest/
http://googledevelopers.blogspot.co.uk/2015/04/a-final-farewell-to-clientlogin-oauth.html
https://developers.google.com/identity/protocols/OAuth2?utm_campaign=oauth-415&utm_source=gdbc&utm_medium=blog

SheetSync Documentation, Release 0.2.3

Before using sheetsync in production you should learn about Client IDs and replace the
ia_credentials_helper() function with your own function that manages authentication and creates
an OAuth2Credentials object.

New Project

Start by setting up a new project via Google’s developer console, console.developers.google.com:

Pick a project name:

Create a new Client ID

From your new project’s configuration panel, in the console, select “Credentials” from the lefthand menu and then
“Create new Client ID” for OAuth:

For this tutorial, choose the type Installed application:

4 Chapter 1. Getting Started

https://developers.google.com/api-client-library/python/guide/aaa_oauth
https://google-api-python-client.googlecode.com/hg/docs/epy/oauth2client.client.OAuth2Credentials-class.html
https://console.developers.google.com

SheetSync Documentation, Release 0.2.3

The consent screen is what users will see when the sheetsync script asks for access to their Google drive.

Finally select “Other” for Installed application type:

1.2. Setting up OAuth 2.0 access 5

SheetSync Documentation, Release 0.2.3

The steps above should have got to you a page that displays your new Client ID and Client Secret. For example:

Enable Drive API

Next we need to associate Drive API access with these OAuth credentials. From the lefthand menu choose API and
search for Drive:

Click through to the Drive API and “Enable API”:

You’re now ready to start using this Client ID information with sheetsync.

Injecting data to a Google sheet

sheetsync works with data in a dictionary of dictionaries. Each row is represented by a dictionary, and these are
themselves stored in a dictionary indexed by a row-specific key. For example this dictionary represents two rows of

6 Chapter 1. Getting Started

https://developers.google.com/drive/

SheetSync Documentation, Release 0.2.3

data each with columns “Color” and “Performer”:

1 data = { "Kermit": {"Color" : "Green", "Performer" : "Jim Henson"},
2 "Miss Piggy" : {"Color" : "Pink", "Performer" : "Frank Oz"}
3 }

To insert this data (add or update rows) into a target worksheet in a google spreadsheet doc use this code:

1 import logging
2 from sheetsync import Sheet, ia_credentials_helper
3 # Turn on logging so you can see what sheetsync is doing.
4 logging.getLogger('sheetsync').setLevel(logging.DEBUG)
5 logging.basicConfig()
6

7 # Create OAuth2 credentials, or reload them from a local cache file.
8 CLIENT_ID = '171566521677-3ppd15g5u4lv93van0eri4tbk4fmaq2c.apps.googleusercontent.com'
9 CLIENT_SECRET = 'QJN*****************hk-i'

10 creds = ia_credentials_helper(CLIENT_ID, CLIENT_SECRET,
11 credentials_cache_file='cred_cache.json')
12

13 data = { "Kermit": {"Color" : "Green", "Performer" : "Jim Henson"},
14 "Miss Piggy" : {"Color" : "Pink", "Performer" : "Frank Oz"} }
15

16 # Find or create a spreadsheet, then inject data.
17 target = Sheet(credentials=creds, document_name="sheetsync Getting Started")
18 target.inject(data)
19 print "Spreadsheet created here: %s" % target.document_href

The first part of this script (lines 1-11) imports the Sheet object and ia_credentials_helper function. This
function is included to help you quickly generate an OAuth2Credentials object using your Client ID and Secret.

When the ia_credentials_helper function runs it will print a URL to allow you to grant the script access, like
this:

From this URL (you may have to log in to a Google Drive account) you will be prompted to give the API Client you
set up in section 1.2, access to your documents:

1.3. Injecting data to a Google sheet 7

https://google-api-python-client.googlecode.com/hg/docs/epy/oauth2client.client.OAuth2Credentials-class.html

SheetSync Documentation, Release 0.2.3

After accepting you’re presented with a verification code that you must paste back into the script:

At this point ia_credentials_helper also caches the credentials - so that you don’t need to repeat this step on
future runs of the script.

The later code defines the table data (lines 13,14) then line 17 creates a new spreadsheet document in your google
drive. Finaly line 18 inserts the data resulting in:

It also prints the URL of the google sheet so you can view the result for yourself.

Since you’ll probably want to update this spreadsheet, take note of the spreadsheet’s document key from the URL:

and then you can inject new data to the existing document by initializing the sheet as follows:

1 target = Sheet(credentials=creds,
2 document_key="1bnieREGAyXZ2TnhXgYrlacCIY09Q2IfGXNZbjsvj82M",
3 worksheet_name="Sheet1")

Note: The ‘inject’ method only adds or updates rows. If you want to delete rows from the spreadsheet to keep it in
sync with the input data then use the ‘sync’ method described in the next section.

8 Chapter 1. Getting Started

CHAPTER 2

Tutorial

Let’s extend the example from Getting Started, and use more of sheetsync’s features. (With apologies in advance to
the Muppets involved).

Customizing the spreadsheet

Key Column Headers

The first thing we’ll fix is that top-left cell with the value ‘Key’. The keys for our data are Names and the column
header should reflect that. This is easy enough to do with the key_column_headers field:

target = sheetsync.Sheet(credentials=creds,
document_name="Muppet Show Tonight",
key_column_headers=["Name"])

Templates for Formatting

Google’s spreadsheet API doesn’t currently allow control over cell formatting, but you can specify a template spread-
sheet that has the formatting you want - and use sheetsync to add data to a copy of the template. Here’s a template
spreadsheet created to keep my list of Muppets:

9

SheetSync Documentation, Release 0.2.3

https://docs.google.com/spreadsheets/d/1J__SpvQvI9S4bW-BkA0PmPykH8VVT9bdoWZ-AW7V_0U/edit#gid=0

The template’s document key is 1J__SpvQvI9S4bW-BkA0PmPykH8VVT9bdoWZ-AW7V_0U we can instruct
sheetsync to use this as a basis for the new spreadsheet it creates as follows:

1 target = sheetsync.Sheet(credentials=creds,
2 document_name="Muppet Show Tonight",
3 worksheet_name="Muppets",
4 template_key="1J__SpvQvI9S4bW-BkA0PmPykH8VVT9bdoWZ-AW7V_0U",
5 key_column_headers=["Name"])

Note that I’ve also specified the worksheet name in that example with the ‘worksheet_name’ parameter.

Folders

If you use folders to organize your Google drive, you can specify the folder a new spreadsheet will be created
in. Use either the ‘folder_name’ or ‘folder_key’ parameters. Here for example I have a folder with the key
0B8rRHMfAlOZrWUw4LUhZejk4c0E:

and instruct sheetsync to move the new spreadsheet into that folder with this code:

1 target = sheetsync.Sheet(credentials=creds,
2 document_name="Muppet Show Tonight",
3 worksheet_name="Muppets",
4 key_column_headers=["Name"],
5 template_key="1J__SpvQvI9S4bW-BkA0PmPykH8VVT9bdoWZ-AW7V_0U",
6 folder_key="0B8rRHMfAlOZrWUw4LUhZejk4c0E")

Formulas

Often you’ll need some columns to contain formulas that depend on data in other columns, and when new rows are
inserted by sheetsync, ideally you’d want those formulas to be added too. When initializing the spreadsheet you can

10 Chapter 2. Tutorial

https://docs.google.com/spreadsheets/d/1J__SpvQvI9S4bW-BkA0PmPykH8VVT9bdoWZ-AW7V_0U/edit#gid=0

SheetSync Documentation, Release 0.2.3

specify a row (typically above the header row) that contains reference formulas. Best illustrated by this example

https://docs.google.com/spreadsheets/d/1tn-lGqGHDrVbnW2PRvwie4LMmC9ZgYHWlbyTjCvwru8/edit#gid=0

Here row 2 contains formulas (Written out in row 1 for readability) that reference hidden columns. Row 3 contains
the headers.

When new rows are added to this spreadsheet the ‘Photo’ and ‘Muppet’ columns will be populated with a formula
similar to the reference row. Here are the parameters to set this up:

target = sheetsync.Sheet(credentials=creds,
document_key="1tn-lGqGHDrVbnW2PRvwie4LMmC9ZgYHWlbyTjCvwru8",
worksheet_name="Muppets",
key_column_headers=["Name"],
header_row_ix=3,
formula_ref_row_ix=2)

animal = {'Animal': {'Color': 'Red',
'Image URL': 'http://upload.wikimedia.org/wikipedia/en/e/e7/

→˓Animal_%28Muppet%29.jpg',
'Performer': 'Frank Oz',
'Wikipedia': 'http://en.wikipedia.org/wiki/Animal_(Muppet)'} }

target.inject(animal)

Synchronizing data

Until now all examples have used the ‘inject’ method to add data into a spreadsheet or update existing rows. As the
name suggests, sheetsync also has a ‘sync’ method which will make sure the rows in the spreadsheet match the rows
passed to the function. This might require that rows are deleted from the spreadsheet.

The default behavior is to not actually delete rows, but instead flag them for deletion with the text “(DELETED)”
being appended to the values of the Key columns on rows to delete. This is to help recovery from accidental deletions.
Full row deletion can be enabled by passing the flag_deletes argument as follows:

2.1. Customizing the spreadsheet 11

https://docs.google.com/spreadsheets/d/1tn-lGqGHDrVbnW2PRvwie4LMmC9ZgYHWlbyTjCvwru8/edit#gid=0

SheetSync Documentation, Release 0.2.3

target = sheetsync.Sheet(credentials=creds,
document_key="1J__SABCD1234bW-ABCD1234kH8VABCD1234-AW7V_0U",
worksheet_name="Muppets",
key_column_headers=["Name"],
flag_deletes=False)

new_list = { 'Kermit' : { 'Color' : 'Green',
'Performer' : 'Jim Henson' },

'Fozzie Bear' : {'Color' : 'Orange' } }

target.sync(new_list)

With rows for Miss Piggy and Kermit already in the spreadsheet, the sync function (in the example above) would
remove Miss Piggy and add Fozzie Bear.

Taking backups

Warning: The sync function could delete a lot of data from your worksheet if the Key values get corrupted
somehow. You should use the backup function to protect yourself from errors like this.

Some simple mistakes can cause bad results. For instance, if the key column headers on the spreadsheet don’t match
those passed to the Sheet constructor the sync method will delete all the existing rows and add new ones! You could
protect rows and ranges to guard against this, but perhaps the simplest way to mitigate the risk is by creating a backup
of your spreadsheet before syncing data. Here’s an example:

target.backup("Backup of my important sheet. 16th June",
folder_name = "sheetsync Backups.")

This code would take a copy of the entire spreadsheet that the Sheet instance ‘target’ belongs to, name it “Backup of
my important sheet. 16th June”, and move it to a folder named “sheetsync Backups.”.

Debugging

sheetsync uses the standard python logging module, the easiest way to find out what’s going on under the covers is to
turn on all logging:

import sheetsync
import logging
Set all loggers to DEBUG level..
logging.getLogger('').setLevel(logging.DEBUG)
Register the default log handler to send logs to console..
logging.basicConfig()

If you find issues please raise them on github, and if you have fixes please submit pull requests. Thanks!

12 Chapter 2. Tutorial

http://github.com/mbrenig/sheetsync/issues

CHAPTER 3

The sheetsync package API

Sheet

class sheetsync.Sheet(credentials=None, document_key=None, document_name=None, work-
sheet_name=None, key_column_headers=None, header_row_ix=1, for-
mula_ref_row_ix=None, flag_deletes=True, protected_fields=None, tem-
plate_key=None, template_name=None, folder_key=None, folder_name=None)

Represents a single worksheet within a google spreadsheet.

This class tracks the google connection, the reference to the worksheet, as well as options controlling the struc-
ture of the data in the worksheet.. for .. rubric:: example

•Which row is used as the table header

•What header names should be used for the key column(s)

•Whether some columns are protected from overwriting

document_key
str – The spreadsheet’s document key assigned by google drive. If you are using sheetsync to create a
spreadsheet then use this attribute to saved the document_key, and make sure you pass it as a parameter in
subsequent calls to __init__

document_name
str – The title of the google spreadsheet document

document_href
str – The HTML href for the google spreadsheet document

__init__(credentials=None, document_key=None, document_name=None, worksheet_name=None,
key_column_headers=None, header_row_ix=1, formula_ref_row_ix=None,
flag_deletes=True, protected_fields=None, template_key=None, template_name=None,
folder_key=None, folder_name=None)

Creates a worksheet object (also creating a new Google sheet doc if required)

Parameters

13

SheetSync Documentation, Release 0.2.3

• credentials (OAuth2Credentials) – Credentials object returned by the google
authorization server. Described in detail in this article: https://developers.google.com/
api-client-library/python/guide/aaa_oauth For testing and development consider using the
ia_credentials_helper helper function

• document_key (Optional) (str) – Document key for the existing spreadsheet
to sync data to. More info here: https://productforums.google.com/forum/#!topic/docs/
XPOR9bTTS50 If this is not provided sheetsync will use document_name to try and find
the correct spreadsheet.

• document_name (Optional) (str) – The name of the spreadsheet document to
access. If this is not found it will be created. If you know the document_key then using
that is faster and more reliable.

• worksheet_name (str) – The name of the worksheet inside the spreadsheet that data
will be synced to. If omitted then the default name “Sheet1” will be used, and a matching
worksheet created if necessary.

• key_column_headers (Optional) (list of str) – Data in the key col-
umn(s) uniquely identifies a row in your data. So, for example, if your data is indexed
by a single username string, that you want to store in a column with the header ‘User-
name’, you would pass this:

key_column_headers=[’Username’]

However, sheetsync also supports component keys. Python dictionaries can use tuples as
keys, for example if you had a tuple key like this:

(‘Tesla’, ‘Model-S’, ‘2013’)

You can make the column meanings clear by passing in a list of three
key_column_headers:

[’Make’, ‘Model’, ‘Year’]

If no value is given, then the default behavior is to name the column “Key”; or “Key-1”,
“Key-2”, ... if your data dictionaries keys are tuples.

• header_row_ix (Optional) (int) – The row number we expect to see column
headers in. Defaults to 1 (the very top row).

• formula_ref_row_ix (Optional) (int) – If you want formulas to be added to
some cells when inserting new rows then use a formula reference row. See Formulas for
an example use.

• flag_deletes (Optional) (bool) – Specify if deleted rows should only be
flagged for deletion. By default sheetsync does not delete rows of data, it just marks
that they are deleted by appending the string ” (DELETED)” to key values. If you pass
in the value “False” then rows of data will be deleted by the sync method if they are not
found in the input data. Note, use the inject method if you only want to add or modify data
to in a worksheet.

• protected_fields (Optional) (list of str) – An list of fields (column
headers) that contain protected data. sheetsync will only write to cells in these columns if
they are blank. This can be useful if you are expecting users of the spreadsheet to colab-
orate on the document and edit values in certain columns (e.g. modifying a “Test result”
column from “PENDING” to “PASSED”) and don’t want to overwrite their edits.

• template_key (Optional) (str) – This optional key references the spreadsheet
that will be copied if a new spreadsheet needs to be created. This is useful for copying over
formatting, a specific header order, or apps-script functions. See Templates for Formatting.

14 Chapter 3. The sheetsync package API

https://developers.google.com/api-client-library/python/guide/aaa_oauth
https://developers.google.com/api-client-library/python/guide/aaa_oauth
https://productforums.google.com/forum/#!topic/docs/XPOR9bTTS50
https://productforums.google.com/forum/#!topic/docs/XPOR9bTTS50

SheetSync Documentation, Release 0.2.3

• template_name (Optional) (str) – As with template_key but the name of the
template spreadsheet. If known, using the template_key will be faster.

• folder_key (Optional) (str) – This optional key references the folder that a new
spreadsheet will be moved to if a new spreadsheet needs to be created.

• folder_name (Optional) (str) – Like folder_key this parameter specifies the op-
tional folder that a spreadsheet will be created in (if required). If a folder matching the
name cannot be found, sheetsync will attempt to create it.

backup(backup_name, folder_key=None, folder_name=None)
Copies the google spreadsheet to the backup_name and folder specified.

Parameters

• backup_name (str) – The name of the backup document to create.

• folder_key (Optional) (str) – The key of a folder that the new copy will be
moved to.

• folder_name (Optional) (str) – Like folder_key, references the folder to move
a backup to. If the folder can’t be found, sheetsync will create it.

data(as_cells=False)
Reads the worksheet and returns an indexed dictionary of the row objects.

For example:

>>>print sheet.data()

{‘Miss Piggy’: {‘Color’: ‘Pink’, ‘Performer’: ‘Frank Oz’}, ‘Kermit’: {‘Color’: ‘Green’, ‘Performer’:
‘Jim Henson’}}

inject(raw_data, row_change_callback=None)
Use this function to add rows or update existing rows in the spreadsheet.

Parameters

• raw_data (dict) – A dictionary of dictionaries. Where the keys of the outer dictionary
uniquely identify each row of data, and the inner dictionaries represent the field,value pairs
for a row of data.

• row_change_callback (Optional) (func) – A callback function that you can
use to track changes to rows on the spreadsheet. The row_change_callback function must
take four parameters like so:

change_callback(row_key, row_dict_before, row_dict_after, list_of_changed_keys)

Returns

A simple counter object providing statistics about the changes made by sheetsync.

Return type UpdateResults (object)

sync(raw_data, row_change_callback=None)
Equivalent to the inject method but will delete rows from the google spreadsheet if their key is not found
in the input (raw_data) dictionary.

Parameters

• raw_data (dict) – See inject method

• row_change_callback (Optional) (func) – See inject method

Returns See inject method

3.1. Sheet 15

SheetSync Documentation, Release 0.2.3

Return type UpdateResults (object)

UpdateResults

class sheetsync.UpdateResults
A lightweight counter object that holds statistics about number of updates made after using the ‘sync’ or ‘inject’
method.

added
int – Number of rows added

changed
int – Number of rows changed

nochange
int – Number of rows that were not modified.

deleted
int – Number of rows deleted (which will always be 0 when using the ‘inject’ function)

ia_credentials_helper

sheetsync.ia_credentials_helper(client_id, client_secret, creden-
tials_cache_file=’credentials.json’, cache_key=’default’)

Helper function to manage a credentials cache during testing.

This function attempts to load and refresh a credentials object from a json cache file, using the cache_key and
client_id as a lookup.

If this isn’t found then it starts an OAuth2 authentication flow, using the client_id and client_secret and if
successful, saves those to the local cache. See Injecting data to a Google sheet.

Parameters

• client_id (str) – Google Drive API client id string for an installed app

• client_secret (str) – The corresponding client secret.

• credentials_cache_file (str) – Filepath to the json credentials cache file

• cache_key (str) – Optional string to allow multiple credentials for a client to be stored
in the cache.

Returns A google api credentials object. As described here: https://developers.google.com/
api-client-library/python/guide/aaa_oauth

Return type OAuth2Credentials

16 Chapter 3. The sheetsync package API

https://developers.google.com/api-client-library/python/guide/aaa_oauth
https://developers.google.com/api-client-library/python/guide/aaa_oauth

Index

Symbols
__init__() (sheetsync.Sheet method), 13

A
added (UpdateResults attribute), 16

B
backup() (sheetsync.Sheet method), 15

C
changed (UpdateResults attribute), 16

D
data() (sheetsync.Sheet method), 15
deleted (UpdateResults attribute), 16
document_href (Sheet attribute), 13
document_key (Sheet attribute), 13
document_name (Sheet attribute), 13

I
ia_credentials_helper() (in module sheetsync), 16
inject() (sheetsync.Sheet method), 15

N
nochange (UpdateResults attribute), 16

S
Sheet (class in sheetsync), 13
sync() (sheetsync.Sheet method), 15

U
UpdateResults (class in sheetsync), 16

17

	Getting Started
	Installation
	Setting up OAuth 2.0 access
	New Project
	Create a new Client ID
	Enable Drive API

	Injecting data to a Google sheet

	Tutorial
	Customizing the spreadsheet
	Key Column Headers
	Templates for Formatting
	Folders
	Formulas
	Synchronizing data

	Taking backups
	Debugging

	The sheetsync package API
	Sheet
	UpdateResults
	ia_credentials_helper

